
Introduction to
Bioinformatics II
Cecile Cres & Anna Schrecengost

March 25, 2024

Outline
● Definitions & slurm parameters
● Basics on parallel computing
● Different types of processes

○ Multithreaded processes
○ MPI processes

● Examples with python
● How to determine necessary resources
● Data storage on Unity
● Array jobs & job dependencies

https://groups.oist.jp/scs/use-slurm

Definitions
Name Definition

node One compute system with CPUs/cores, shared memory, and local storage

core A single computation unit capable of running one process or one thread. On slurm, core
= cpu

cpu For Slurm, same as a core

process A single running binary which can have one or more threads

task For slurm, same as a process

thread A single stream of execution. Runs on one core, belongs to a process

job One request for resources on a cluster

partition A group of nodes that can be used together

resource Any hardware or software resource managed by Slurm (e.g. node, core, GPU, memory)

Important Slurm parameters
Option Description

--ntasks -n Number of tasks or processes you wish to start, which use at least one core

--cpus-per-task -c Number of cores each task will use

--nodes -N Minimum number of nodes, each of which needs to run at least one task

--mem Memory per node. Split among tasks on the same node, shared between
cores in a single task

--mem-per-cpu Memory per core. Total allocated memory per task is this value multiplied by
the number of cores

--time -t The amount of time that you will need

--partition -p The partition that you wish to use

--gres Specifies special resources that you want to use on a node (e.g. GPU units)

---job-name -J Give the job a name

Slurm environmental parameters
Slurm creates environmental
variables when you submit
jobs that you can use in your
job script

Call them using e.g.
$SLURM_CPUS_PER_TASK

Variable Descrition

SLURM_JOB_ID ID of job

SLURM_JOB_NODELIST List of nodes allocated to job

SLURM_JOB_NUM_NODES Total number of nodes in the job’s
resource allocation

SLURM_NTASKS Number of tasks required

SLURM_CPUS_PER_TASK Number of CPUs/cores requested per
task

SLURM_ARRAY_TASK_ID Job array ID (index) number

Unity partitions (partial list)
--partition cpu,cpu-long

Specifying more than one
partition: slurm will assign
your job to the first
available

Jobs in the preempt
partition start very quickly
but can be preempted
(stopped) after 2 hours -
either make sure job has
checkpoints or needs less
than 2 hours

https://docs.unity.rc.umass.edu/documentation/cluster_specs/partitions/

Unity nodes (partial list)

Click to get more info
about the nodes:

https://docs.unity.rc.umass.edu/documentation/cluster_specs/nodes/

Parallel computing vs serial computing

● Instructions are executed in a sequence
● Single CPU core / processor
● High workload per processor

Serial
computing

Calculate
size of a
genome

1. Open FASTA file
2. Store DNA sequence into a string
3. Calculate size of string

CPU core: a compute unit of a Central Processing Unit (CPU) capable of
running processes. Also referred to as a processor.
Process: an instance of a program.

CPU

Task Instructions Output data

Output file
with

genome
accessing

ID and size

Parallel computing vs serial computing

● Instructions are executed in parallel
● Multiple CPU cores
● Low workload per processor

Parallel
computing

CPU

Task Instructions Output data

CPU

 Calculate the size of genomes in multiple FASTA files (example of data parallelism)

Parallel computing: distributed vs shared memory

Shared memory
architecture

● Multiple processors share access to a global memory space
● Shared memory programming (or multithreading)

○ Threads are sub processes within a process
● Python multiprocessing library

memory (RAM)

CPU cores

Process: an instance of a program.
Threads: program flows with each flow processing its own subset of data or its own set of instructions.
RAM (Random Access Memory): memory space where files and programs are loaded to run.

Parallel computing: distributed vs shared memory

Distributed
memory

architecture

● Collection of serial computers (compute nodes) working together
● Each node has rapid access to its own local memory and access to the memory of other nodes

via some sort of communications network
● Data are exchanged between nodes as messages over the network
● Message Passing Interface (MPI): message passing library for parallel programs

memory (RAM)

CPU cores

memory (RAM)

CPU cores

memory (RAM)

CPU cores

memory (RAM)

CPU cores
network

Parallel computing: distributed vs shared memory
Distributed memory architecture

● Memory space accessible to all processors
● Data sharing between tasks is fast due to the

proximity of memory to CPUs

Shared memory architecture

● Lack of scalability between memory and
CPUs

● Memory is scalable with the number of
processors

● Each processor can rapidly access its
own memory

● Costly

● The programmer is responsible for many
of the details associated with data
communication between processors.

● Non-uniform memory access times - data
residing on a remote node takes longer to
access than node local data.

A
dv

an
ta

ge
s

D
is

ad
va

nt
ag

es

Relevant Slurm parameters

Here -n and -c are Slurm defaults

Always specify memory

--mem=total memory for job

#!/bin/bash

#SBATCH --ntasks=1, -n=1
#SBATCH --cpus-per-task=1, -c=1
#SBATCH --mem=<X>

Single process, multiple threads - multithreading

https://groups.oist.jp/scs/use-slurm

Multithreading in bioinformatics

Many bioinformatics tasks are “embarrassingly parallel” -
e.g. many sequence processing steps can be run
independently for each sample: array jobs

But many bioinformatics problems cannot be divided into
separate tasks but still need to be run in parallel across
several cores due to large size of dataset and
computational resources required

Most bioinformatics software can utilize multiple cores –
look for parameters including the words “threads” or
“cores”

https://hbctraining.github.io/Intro-to-shell-flipped/lessons/08_HPC_intro_and_terms.html

Multithreading in Slurm

--mem = memory per node = total
memory for job

Make sure that you are also requesting
the same amount of cores/threads in the
code that you are running!

There is a practical limit on how many cores a

given application can use, be careful not to ask

for more than you can use and test to find out

how many are effective for your job

#!/bin/bash

#SBATCH --ntasks=1, -n=1
#SBATCH --cpus-per-task=<n>, -c=<n>
#SBATCH --mem=<X>

Example batch script
#!/bin/bash
#SBATCH --ntasks=1
#SBATCH --cpus-per-task=11
#SBATCH --mem=60GB
#SBATCH --mail-user=myemail@school.edu
#SBATCH --mail-type=ALL
#SBATCH –time=10:00:00 # ten hours
#SBATCH –partition=cpu
#SBATCH –job-name=example_job
#SBATCH –output=%x_%j.out

module load raxml/8.2.12

raxmlHPC-PTHREADS-SSE3
-T "$SLURM_CPUS_ON_NODE"
-m GTRGAMMAI -s aln.fasta -n T1 -p 12345 -# 200

Include if you want email updates for your job

Give job a memorable name

Rename standard output files based on job
name (%x) and job ID (%j)
Here -T = number of threads for software to
run. Slurm environmental parameter for
--cpus-per-task

Always specify memory

Allocate enough time for job and specify
partition that can provide enough

}
}

mailto:myemail@school.edu

Scalability of bioinformatics tools with increasing cores MSA

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8323933/

Short read alignment De novo sequence assembly

SINA

MAFFT

ClustalOmega

Bowtie2_build Bowtie2_align Velveth Velvetg

BBMap BWA_MEM IDBA SPAdes

import multiprocessing

import glob

import sys

from Bio import SeqIO

def get_genome_size(fa_file): # target function that takes a fasta file as input and returns a
 results = {} # dictionary mapping dna sequence id to size of dna sequence
 for record in SeqIO.parse(fa_file, "fasta"):

 results[record.id] = len(str(record.seq))

 return results

def get_all_genome_size(fasta_files, num_processes):

 with multiprocessing.Pool(num_processes) as pool: # create a Pool object with a fixed number of processes
 results = pool.map(get_genome_size_v1, fasta_files) # call target function on all fasta files

if __name__ == "__main__":

 num_processes = int(sys.argv[1])

 fasta_files = glob.glob(os.path.join(os.getcwd(), "*.fna")) # get list of fasta files in working directory
 get_all_genome_size(fasta_files, num_processes)

● Pool maps a target function to a list of
values

● By default, Pool will have one process
for each CPU core requested
(num_processes)

● After the execution of the code, Pool
returns the output in the form of a list

● Pool only keeps processes under
execution into memory

● Method preferred if dealing with a lot of
data

Python library for parallel computing: multiprocessing
multiprocessing is bound to a single compute node

Parallelism using Pool

import multiprocessing

import glob

from Bio import SeqIO

def get_genome_size(fa_file, results):

 p_results = {}

 for record in SeqIO.parse(fa_file, "fasta"):

 p_results[record.id] = len(str(record.seq))

 results[os.getpid()] = p_results

def get_all_genome_size(fasta_files, num_processes):

 with mp.Manager() as manager: # create manager object to allow processes to manipulate python data structures
 results = manager.dict() # create dictionary to share amongst processes
 # create list of Process objects
 processes = [mp.Process(target=get_genome_size, args=(fasta_files[i], results)) for i in range(len(fasta_files))]

 for p in processes:

 p.start() # start the processes
 for p in processes:

 p.join() # join the processes, program will hang and wait until all the processes are done

if __name__ == "__main__":

 fasta_files = glob.glob(os.path.join(os.getcwd(), "*.fna"))# get list of fasta files in working directory
 get_all_genome_size(fasta_files, num_processes)

Python library for parallel computing: multiprocessing

● Specify function to execute via
target and arguments via args

● By default, Process will have one
process for each CPU core
requested on node

● Process keeps all the processes
in memory

● Method preferred if your task is
I/O bound (task is limited by the
speed at which it can perform
input/output operations) or if you
are working with small volume of
data

multiprocessing is bound to a single compute node

Parallelism using Process

Python library for parallel computing: multiprocessing

$ salloc -p cpu -c 10 --mem=50G --time=02:00:00

$ python get_dna_size_pool.py 10

[{'NZ_CP009775.1': 5515525, 'NZ_CP009776.1': 115320,

'NZ_CP009777.1': 212192, 'NZ_CP009778.1': 15271},

{'NZ_CP007457.1': 2032698}, {'NZ_CP011698.1':

4105334},...

Start an interactive session

multiprocessing is bound to a single compute node

Parallelism using Pool

$ salloc -p cpu -c 10 --mem=50G --time=02:00:00

$ python get_dna_size_process.py

{1: {'NZ_CP007457.1': 2032698}, 2: {'NZ_CP011698.1': 4105334}, 0:

{'NZ_CP009775.1': 5515525, 'NZ_CP009776.1': 115320,

'NZ_CP009777.1': 212192, 'NZ_CP009778.1': 15271},...

Parallelism using Process

time to compute genome size for
503 fasta files: 1.133 seconds

time to compute genome size for
503 fasta files: 2.880 seconds

Use psutil (python system and process utilities) python library (documentation) to retrieve statistics on running
processes and system utilization (CPU, memory,…)
Python multiprocessing library documentation

https://psutil.readthedocs.io/en/latest/#psutil.Process.memory_info
https://docs.python.org/3/library/multiprocessing.html

#!/bin/bash

#SBATCH --nodes=<n>, -N=<n>
#SBATCH --ntasks=<m>, -n=<m>
#SBATCH --cpus-per-task=<1>, -c=<1>
#SBATCH --mem=<X>

module load intel-oneapi-mpi/2021.6.0
module load raxml/8.2.11

srun raxmlHPC-MPI <arguments>

Multiple processes, single thread - MPI

1. Load MPI and software
2. Run with srun

How to estimate resources needed?
● Finding the amount of memory and number of cores to request requires testing and

experiments
● Databases → best to have jobs that allocate enough memory to store the databases

○ Program will read from disk (I/O bound) if not enough memory
● Use seff <job id> to check the memory and CPU usage after the job is done

#!/bin/bash
#SBATCH --cpus-per-task=11 # number of threads + main thread
#SBATCH --mem=200G

module load blast-plus/2.13.0+py3.8.12

blastn -query gene.faa -db /datasets/bio/ncbi-db/nt -out blastn.out
-num_threads 10 -max_target_seqs 1

Example with BLAST+:
● Sequences stored in .nsq

files
● Ncbi nt database: 689GB

High performance storage
● /scratch/workspace → high performance VAST storage → place to read/write data
● /project → NESE → place to store data that is not actively used
● Typical workflow:

○ Transfer data from /project to /scratch/workspace
○ Run program to read and write data to /scratch/workspace
○ Transfer the final output back to /project

● Transfer data from /project to /scratch/workspace
○ Use rsync
○ If large volume of data/files (>10k) use tar
○ Use tmux (Unity documentation) to transfer data

https://docs.unity.rc.umass.edu/documentation/jobs/#tmux-salloc

GNU parallel

● free, open-source tool for running shell commands and scripts in parallel and
sequence on a single node

● Best for workflows:
○ with tasks that do not use MPI
○ with similar tasks and no execution order requirements or data dependencies

● By default, GNU parallel runs one command per core

Example with serial tasks:
#!/bin/bash
#SBATCH -c 1
#SBATCH --mem=10G

module load sratoolkit/3.0.7
module load parallel/20210922

cat SRR.numbers | parallel fastq-dump --split-files --origfmt --gzip

GNU parallel

● Use the -j/--jobs option to specify a different number of parallel commands

Example with parallel tasks:

#!/bin/bash
#SBATCH -c 5
#SBATCH --mem=10G

module load sratoolkit/3.0.7
module load parallel/20210922

cat SRR.numbers | parallel -j 5 fastq-dump --split-files --origfmt --gzip

Array jobs
● Job arrays automate submission

of multiple copies of a single
template jobs

● Slurm creates and submits
multiple jobs for you

● Limitations:
○ Consider what resources you will

need for each array job

● Useful for many small tasks that
can be run independently and
simultaneously

● Useful when you have a
collection of input files that are
all analysed in the same way –
e.g. processing sequencing files
from many samples

Array jobs - basic options
● Use –array- flag in sbatch script to enable array processing
● Each array element is assigned an inclusive index:--array=0-10 submits 11

jobs
● Then reference array index in job script with the

${SLURM_ARRAY_TASK_ID} environmental variable

If end range with %<number>, Slurm
will start at most <number> jobs at one
time

Example array

5 job array

Print the array task ID

Run program - takes input
with task ID and outputs
output with same task ID

Here you have input files
named input_1.data …
input_5.data

#!/bin/bash
#SBATCH --partition=cpu
#SBATCH --time=01:00:00 # 1 hour
#SBATCH --mem=5G
#SBATCH --array=1-5

Echo “this is job number” ${SLURM_ARRAY_TASK_ID}

module load program
program < input_${SLURM_ARRAY_TASK_ID}.data >
output_${SLURM_ARRAY_TASK_ID}

#!/bin/bash
#SBATCH --partition=cpu
#SBATCH --time=01:00:00 # 1 hour
#SBATCH --mem=5G
#SBATCH --array=1-5

Echo “this is job number” ${SLURM_ARRAY_TASK_ID}

module load program
Program < input${SLURM_ARRAY_TASK_ID} >
output${SLURM_ARRAY_TASK_ID}

#!/bin/bash
#SBATCH --partition=cpu
#SBATCH --time=01:00:00 # 1 hour
#SBATCH --mem=5G
SLURM_ARRAY_TASK_ID=”1”

Echo “this is job number” ${SLURM_ARRAY_TASK_ID}

module load program
Program < input${SLURM_ARRAY_TASK_ID} >
output${SLURM_ARRAY_TASK_ID}

#!/bin/bash
#SBATCH --partition=cpu
#SBATCH --time=01:00:00 # 1 hour
#SBATCH --mem=5G
SLURM_ARRAY_TASK_ID=”5”

Echo “this is job number” ${SLURM_ARRAY_TASK_ID}

module load program
Program < input${SLURM_ARRAY_TASK_ID} >
output${SLURM_ARRAY_TASK_ID}

……..

Array jobs management

● Cancel entire array using scancel JOBID (e.g. scancel 21760752)
● Cancel individual array using its index: scancel JOBID_ARRAYINDEX (e.g. scancel

21760752_1)
● Each array job is a copy of original template. Resource requests in the template are for each job, not

the entire array.

Individual running
array job
Array jobs in queue

Example array - BLAST
● Different approaches depending on how your data is structured

○ Refer to documentation for other examples

#!/bin/bash
#SBATCH --N 1
#SBATCH -c 12
#SBATCH --array=1-23

INPUT_FILE=$(sed -n
"${SLURM_ARRAY_TASK_ID}p" input.txt)

module load blast-plus/2.12.0
blastx -query "${INPUT_FILE}" -db nr -num_threads
"${SLURM_CPUS_ON_NODE}"

$ ls -l *.fasta > input.txt
$ wc -l input.txt
23

Generate list (input fasta file)
Count number of lines and use as
length of array

Define input variable for BLAST
- Select each line in input.txt

using array index

Run BLAST for each line in input
Specify number of threads

https://docs.unity.rc.umass.edu/documentation/jobs/sbatch/arrays/

Job dependencies/chain jobs
● Submit a job only after another one finishes

○ Useful for workflows/pipelines, jobs with very long
runtimes, jobs where some steps use CPUs and
some GPUs, etc.

● Defer the start of a job until the specified
dependencies have been satisfied

● Useful for workflows/pipelines or if you
have really long running jobs

● Add SBATCH –dependency=<type>
○ Give Slurm a job ID or list of job IDs that you want

to wait before the current job will run, and specify
what condition you want to wat for

How to run job dependencies
--dependency=<condition>:jobid:jobid:

...

--dependency=afterok:jobid

<condition>=condition for job to run,
jobid = list of job IDs job is waiting for

Start job after an earlier job has finished
successfully

e.g. want job2.sh to
run after job1.sh:

$ sbatch job1.sh
Submitted batch job 14107426
$ sbatch --dependency=afterok:14107426 job2.sh

How to run job dependencies
--dependency=afternotok:jobid

--dependency=afterany:jobid

--dependency=after:jobid[+time]

--dependency=aftercorr:jobid[+time]

Start job after an earlier job has failed

Start a job after an earlier job has
finished

Start a job after an earlier job has started
or been cancelled plus a delay given by
[time]

Matches array jobs with array jobs -
when one job in an array ends
successfully, the corresponding array job
in the dependent jobs starts

Additional Resources
● Unity Onboarding video (Spring 2024)
● Snakemake workshop
● Intro to using GPUs on Unity
● AI lab workshops available this semester

● Next workshop on Monday April 22 at 11am

Next workshop

● Unity community Slack
● More contact information

https://docs.unity.rc.umass.edu/events/2024/spring-onboarding/
https://docs.unity.rc.umass.edu/events/2023/snakemake/
https://docs.unity.rc.umass.edu/events/2023/gpus/
https://docs.unity.rc.umass.edu/news/2024/02/uri-spring-workshops/
https://uri-edu.zoom.us/j/93888062902?pwd=VVBlaTBKaW1JUEVSUmJvYWZQYmdEZz09
https://docs.unity.rc.umass.edu/contact/community/
https://docs.unity.rc.umass.edu/contact/

